Skip to main content

Advertisement

Log in

Effect of silica nanoparticles on carbon dioxide separation performances of PVA/PEG cross-linked membranes

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Novel PVA/PEG cross-linked membranes were prepared with (0–20 wt. %) of silica nanoparticles. The presence of both the polymers and additive was confirmed by FTIR analysis. The thermal properties of the membranes were analyzed by TGA and DSC analysis. The morphological and mechanical properties of the membranes were studied by SEM analysis and tensile testing, respectively. The gas permeation performances of the membranes were examined using state-of-the-art gas permeability cell. It was found that permeability of all the gases increased with the increase of silica loading, whereas ideal selectivity of carbon dioxide with respect to nitrogen and methane increased up to 10 wt. % loading and then became nearly constant on further loading. 20 wt. % silica loaded membrane was found to be the best performance membrane. The gas permeability of CO2 was also compared with different gas permeation models and was found to be in close agreement with Maxwell Model. The effect of temperature and pressure of feed gas pressure was also studied on permeation performances and optimum performances were achieved around 65 °C. The gas permeation performances were observed to decrease slightly with the increase in feed gas pressure up to 20 bar which confirms the absence of plasticization phenomenon up to 20 bar. Finally, gas permeation performances were compared with 2008 Robeson trade-off lines and it was found that at 20 wt. % loading, gas permeation performances surpassed the trade-off line for CO2/N2, and for CO2/CH4, the gas permeation performances approached the trade-off line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

DOC:

Degree of cross-linking

DMS:

Disordered mesoporous silica

EVA:

Ethylene vinyl acetate

FPI:

Fluorinated polyimide

MOF:

Metal organic framework

NP:

Nanoparticles

PVA:

Polyvinyl alcohol

PEG:

Polyethylene glycol

PEBAX:

Polyamide-6-b-ethyleneoxide

PU:

Polyurethane

PVC:

Polyvinyl chloride

PDMS:

Polydimethylsiloxane

PEI:

Polyether imide

SPEEK:

Sulfonated poly(ether ether ketone

References

  • Ahn J, Chung WJ, Pinnau I, Guiver MD (2008) Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J Membr Sci 314:123–133

    CAS  Google Scholar 

  • Ahn J, Chung WJ, Pinnau I, Song J, Du N, Robertson GP, Guiver MD (2010) Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1). J Membr Sci 346:280–287

    CAS  Google Scholar 

  • Ameri E, Sadeghi M, Zarei N, Pournaghshband A (2015) Enhancement of the gas separation properties of polyurethane membranes by alumina nanoparticles. J Membr Sci 479:11–19

    CAS  Google Scholar 

  • Anjum MW, Clippel Fd, Didden J, Khan AL, Couck S, Baron GV, Denayer JFM, Sels BF, Vankelecom IFJ (2015) Polyimide mixed matrix membranes for CO2 separations using carbon–silica nanocomposite fillers. J Membr Sci 495:121–129

    Google Scholar 

  • Arthanareeswaran G, Devi TKS, Raajenthiren M (2008) Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I. Separ Purific Technol 64:38–47

    CAS  Google Scholar 

  • Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. J Ind Eng Chem 48:4638–4663

    CAS  Google Scholar 

  • Bhattacharya M, Mandal MK (2018) Synthesis of rice straw extracted nano-silica-composite membrane for CO2 separation. J Clean Prod 186:241–252

    CAS  Google Scholar 

  • Chen XY, Razzak Z, Kaliaguine S, Rodrigue D (2016) Mixed matrix membranes based on silica nanoparticles and microcellular polymers for CO2/CH4 separation. J Cell Plastic. https://doi.org/10.1177/0021955X16681453

    Article  Google Scholar 

  • Cheng Y, Wang Z, Zhao D (2018) Mixed matrix membranes for natural gas upgrading: current status and opportunities. Ind Eng Chem Res 57:4139–4169

    CAS  Google Scholar 

  • Chung T-S, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress Polymer Sci 32:483–507

    CAS  Google Scholar 

  • Cornelius CJ, Marand E (2002) Hybrid silica–polyimide composite membranes: gas transport properties. J Membr Sci 202:97–118

    CAS  Google Scholar 

  • Dilshad MR, Islam A, Sabir A, Shafiq M, Butt MTZ, Ijaz A, Jamil T (2017) Fabrication and performance characterization of novel zinc oxide filled cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation. J Ind Eng Chem 55:65–73

    CAS  Google Scholar 

  • Dilshad MR, Islam A, Hamidullah U, Jamshaid F, Ahmad A, Butt MTZ, Ijaz A (2019) Effect of alumina on the performance and characterization of cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation. Separ Purific Technol 210:627–635

    CAS  Google Scholar 

  • Dilshad MR, Islam A, Haider B, Sabir A, Ijaz A, Khan RU, Durrani AK (2020) Novel PVA/PEG nano-composite membranes tethered with surface engineered multi-walled carbon nanotubes for carbon dioxide separation. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2020.110545

    Article  Google Scholar 

  • Feron PHM (2009) The potential for improvement of the energy performance of pulverized coal fired power stations with post-combustion capture of carbon dioxide. Energy Procedia 1:1067–1074

    CAS  Google Scholar 

  • Goh PS, Ismail AF, Sanip SM, Ng BC, Aziz M (2011) Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separ Purific Technol 81:243–264

    CAS  Google Scholar 

  • Gonzo EE, Parentis ML, Gottifredi JC (2006) Estimating models for predicting effective permeability of mixed matrix membranes. J Membr Sci 277:46–54

    CAS  Google Scholar 

  • Haider B, Dilshad MR, Rehman MAU, Schmitz JV, Kaspereit M (2020a) Highly permeable novel PDMS coated asymmetric polyethersulfone membranes loaded with SAPO-34 zeolite for carbon dioxide separation. Separ Purific Technol. https://doi.org/10.1016/j.seppur.2020.116899

    Article  Google Scholar 

  • Haider B, Dilshad MR, Rehman MAU, Akram MS, Kaspereit M (2020b) Highly permeable innovative PDMS coated polyethersulfone membranes embedded with activated carbon for gas separation. J Natural Gas Sci Eng. https://doi.org/10.1016/j.jngse.2020.103406

    Article  Google Scholar 

  • Hamouda SB, Nguyen QT, Langevin D, Roudesli S (2010) Poly(vinylalcohol)/poly(ethyleneglycol)/poly(ethyleneimine) blend membranes- structure and CO2 facilitated transport. C R Chim 13:372–379

    Google Scholar 

  • Hasebe S, Aoyama S, Tanaka M, Kawakami H (2017) CO2 Separation of polymer membranes containing silica nanoparticles with gas permeable nano-space. J Membrane Sci 536:148–155

    CAS  Google Scholar 

  • Hassanajili S, Masoudi E, Karimi G, Khademi M (2013) Mixed matrix membranes based on polyetherurethane and polyesterurethane containing silica nanoparticles for separation of CO2/CH4 gases. Separ Purific Technol 116:1–12

    CAS  Google Scholar 

  • Hassanajili S, Khademi MA, Keshavarz P (2014) Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes. J Membr Sci 453:369–383

    CAS  Google Scholar 

  • Ho MT, Allinson GW, Wiley DE (2008) Reducing the Cost of CO2 Capture from Flue Gases Using Membrane Technology. Ind Eng Chem Res 47:1562–1568

    CAS  Google Scholar 

  • Houde AY, Krishnakumar B, Charati SG, Stern SA (1996) Permeability of dense (homogeneous) cellulose acetate membranes to methane, carbon dioxide, and their mixtures at elevated pressures. J Appl Polymer Sci 62:2181–2192

    CAS  Google Scholar 

  • Hussain M, König A (2011) Mixed-matrix membrane for gas separation: polydimethylsiloxane filled with zeolite. Chem Eng Technol 35:561–569

    Google Scholar 

  • Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Crystalline Solids 316:309–319

    CAS  Google Scholar 

  • Ismail AF, Ridzuan N, Rahman SA (2002) Latest development on the membrane formation for gas separation Songklanakarin. J Sci Technol 24:1025–1043

    CAS  Google Scholar 

  • Junaidi MUM, Leo CP, Ahmad AL, Kamal SNM, Chew TL (2014) Carbon dioxide separation using asymmetric polysulfone mixed matrix membranes incorporated with SAPO-34 zeolite. Fuel Process Technol 118:125–132

    CAS  Google Scholar 

  • Khalilpour R, Mumford K, Zhai H, Abbas A, Stevens G, Rubin ES (2015) Membrane-based carbon capture from flue gas: a review. J Clean Prod 103:286–300

    CAS  Google Scholar 

  • Khan AL, Sree SP, Martens JA, Raza MT, Vankelecom IFJ (2015) Mixed matrix membranes comprising of matrimid and mesoporous COK-12: Preparation and gas separation properties. J Memb Sci 495:471–478

    CAS  Google Scholar 

  • Khosravi A, Sadeghi M, Banadkohi HZ, Talakesh MM (2014) Polyurethane-silica nanocomposite membranes for separation of propane/methane and ethane/methane. Ind Eng Chem Res 53:2011–2021

    CAS  Google Scholar 

  • Kim JH, Lee YM (2001) Gas permeation properties of poly(amide-6-b-ethylene oxide)–silica hybrid membranes. J Membr Sci 193:209–225

    CAS  Google Scholar 

  • Lasseuguette E, Carta M, Brandani S, Ferrari M-C (2016) Effect of humidity and flue gas impurities on CO2 permeation of a polymer of intrinsic microporosity for post-combustion capture. Int J Greenhouse Gas Control 50:93–99

    CAS  Google Scholar 

  • Lin H, Wagner EV, Raharjo R, Freeman BD, Roman I (2006) High-performance polymer membranes for natural-gas sweetening. Adv Maters 18:39–44

    Google Scholar 

  • Ma J, Zhang F, Qiao Y, Xu Q, Zhou J, Zhang J (2018) Vi-PDMS incorporated with protein-based coatings designed for permeability-enhanced applications. J Appl Polymer Sci 135:46501–46507

    Google Scholar 

  • Mahajan R, Koros WJ (2000) Factors controlling successful formation of mixed-matrix gas separation materials. Ind Eng Chemy Res 39:2692–2696

    CAS  Google Scholar 

  • Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ (2002) Ultrapermeable, reverse-selective nanocomposite membranes. Science 296:519–522

    CAS  PubMed  Google Scholar 

  • Mohagheghian M, Sadeghi M, Chenar MP, Naghsh M (2014) Gas separation properties of polyvinylchloride (PVC)-silica nanocomposite membrane. Korean. J Chem Eng 31:2041–2050

    CAS  Google Scholar 

  • Mondal A, Mandal B (2014) CO2 separation using thermally stable crosslinked poly(vinylalcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine. J Membr Sci 460:126–138

    CAS  Google Scholar 

  • Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33

    CAS  Google Scholar 

  • Park JS, Park JW, Ruckenstein E (2001) Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polymer 42:4271–4280

    CAS  Google Scholar 

  • Park S, Bang J, Choi J, Lee SH, Lee J-H, Lee JS (2014) 3-Dimensionally disordered mesoporous silica (DMS)-containing mixed matrix membranes for CO2 and non-CO2 greenhouse gas separations. Separ Purific Technol 136:286–295

    CAS  Google Scholar 

  • Pedram MZ, Omidkhah M, Amooghin AE (2014) Synthesis and characterization of diethanolamine-impregnated cross-linked polyvinyl alcohol/glutaraldehyde membranes for CO2/CH4 separation. J Ind Eng Chem 20:74–82

    Google Scholar 

  • Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49

    CAS  Google Scholar 

  • Raymond PC, Paul DR (1990) Sorption and transport of pure gases in random styrene methyl methacrylate copolymers. J Polym Sci Part B Polym Phys 28:2079–2102

    CAS  Google Scholar 

  • Raymond PC, Koros WJ, Paul DR (1993) Comparison of mixed and pure gas permeation characteristics for CO2 and CH4 in copolymers and blends containing methyl methacrylate units. J Membr Sci 77:49–57

    CAS  Google Scholar 

  • Rezakazemi M, Niazi Z, Mirfendereski M, Shirazian S, Mohammadi T, Pak A (2011) CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor. Chem Eng J 168:1217–1226

    CAS  Google Scholar 

  • Ricci E, Angelis MGD (2019) Modelling mixed-gas Sorption in glassy polymers for CO2 removal: a sensitivity analysis of the dual mode sorpt model. Membranes. https://doi.org/10.3390/membranes9010008

    Article  PubMed  PubMed Central  Google Scholar 

  • Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185

    CAS  Google Scholar 

  • Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    CAS  Google Scholar 

  • Sadeghi M, Khanbabaei G, Dehaghani AHS, Sadeghi M, Aravand MA, Akbarzade M, Khatti S (2008) Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes. J Memb Sci 322:423–428

    CAS  Google Scholar 

  • Scholes CA, Kentish SE (2008) Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents Chem Eng 1:52–66

    CAS  Google Scholar 

  • Scholes CA, Stevens GW, Kentish SE (2012) Membrane gas separation applications in natural gas processing. Fuel 96:15–28

    CAS  Google Scholar 

  • Semsarzadeh MA, Ghalei B (2013) Preparation, characterization and gas permeation properties of polyurethane–silica/polyvinylalcohol mixed matrix membranes. J Membr Sci 432:115–125

    CAS  Google Scholar 

  • Setiawan WK, Chiang K-Y (2019) Silica applied as mixed matrix membrane inorganic filler for gas separation: a review. Sustain Environ Res. https://doi.org/10.1186/s42834-019-0028-1

    Article  Google Scholar 

  • Shahkaramipour N, Adibi M, Seifkordi AA, Fazli Y (2014) Separation of CO2/CH4 through alumina-supported geminal ionic liquid membranes. J Memb Sci 455:229–235

    CAS  Google Scholar 

  • Sharafian A, Talebian H, Blomerus P, Herrera O, Mérida W (2017) A review of liquefied natural gas refueling station designs. Renew Sustain Energy Rev 69:503–513

    CAS  Google Scholar 

  • Sun D, Li B-B, Xu Z-L (2013) Pervaporation of ethanol/water mixture by organophilic nano-silica filled PDMS composite membranes. Desalination 322:159–166

    CAS  Google Scholar 

  • Taji S, Nejad-Sadeghi M, Goodarznia I (2014) Experimental investigation of operating conditions for preparation of PVA–PEG blend membranes using supercritical CO2. J Supercritical Fluids 95:603–609

    CAS  Google Scholar 

  • Takahashi S, Paul DR (2006a) Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix. Polymer 47:7519–7534

    CAS  Google Scholar 

  • Takahashi S, Paul DR (2006b) Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 2: With chemical coupling to matrix. Polymer 47:7535–7547

    CAS  Google Scholar 

  • Vieth WR, Tam PM, Michaels AS (1966) Dual sorption mechanisms in glassy polystyrene. J Colloid Interface Sci 22:360–370

    CAS  Google Scholar 

  • Vilardi G (2020) P-aminophenol catalysed production on supported nano-magnetite particles in fixed-bed reactor: kinetic modelling and scale-up. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126237

    Article  PubMed  Google Scholar 

  • Vinoba M, Bhagiyalakshmi M, Alqaheem Y, Alomair AA, Pérez A, Rana MS (2017) Recent progress of fillers in mixed matrix membranes for CO2 separation: a review. Separ Purific Technol 188:431–450

    CAS  Google Scholar 

  • Waheed N, Mushtaq A, Tabassum S, Gilani MA, Ilyas A, Ashraf F, Jamal Y, Bilad MR, Khan AU, Khan AL (2016) Mixed matrix membranes based on polysulfone and rice husk extracted silica for CO2 separation. Separ Purific Technol 170:122–129

    CAS  Google Scholar 

  • Wang L, Lin J, Lin Y, Chen C (2009) Crosslinked poly(vinyl alcohol) membranes for separation of dimethyl carbonate/methanol mixtures by pervaporation. Chem Eng J 146:71–78

    CAS  Google Scholar 

  • Wu H, Li X, Li Y, Wang S, Guo R, Jiang Z, Wu C, Xin Q, Lu X (2014) Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. J Membr Sci 465:78–90

    CAS  Google Scholar 

  • Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR (2009) The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—a review. Progress Polymer Sci 34:561–580

    CAS  Google Scholar 

  • Xin Q, Zhang Y, Shi Y, Ye H, Lin L, Ding X, Zhang Y, Wu H, Jiang Z (2016) Tuning the performance of CO2 separation membranes by incorporating multifunctional modified silica microspheres into polymer matrix. J Membrane Sci 514:73–85

    CAS  Google Scholar 

  • Xing R, Ho WSW (2009) Synthesis and characterization of crosslinked polyvinyl alcohol/polyethylene glycol blend membranes for CO2/CH4 separation. J Taiwan Institute Chem Eng 40:654–662

    CAS  Google Scholar 

  • Yamasaki A (2003) An overview of CO2 mitigation options for global warming—emphasizing CO2 sequestration options. J Chem Eng Japan 36:361–375

    CAS  Google Scholar 

  • Zhuanga G-L, Tseng H-H, Wey M-Y (2018) Facile synthesis of CO2-selective membrane derived from butyl reclaimed rubber (BRR) for efficient CO2 separation. J CO2 Utiliz 25:226–234

    Google Scholar 

  • Zornoza B, Irusta S, Tellez C, Coronas J (2009) Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation. Langmuir 25:5903–5909

    CAS  PubMed  Google Scholar 

  • Zou J, Ho WSW (2006) CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol). J Membr Sci 286:310–321

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly obliged to all the staff of Department of Polymer Engineering and Technology, University of the Punjab Lahore, for their cooperation. We are also thankful to Walsin Steel Changshu, China for providing help with regards to morphological analysis. The authors are also thankful to the Institute of Industrial Control Systems, Rawalpindi, Pakistan for carrying out the thermal analysis of the membranes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Rizwan Dilshad.

Ethics declarations

Conflict of interest

We declare that we have no known competing financial interests or personal relationships and there is no conflict of interest among the authors for this research article mentioned below.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilshad, M.R., Islam, A., Haider, B. et al. Effect of silica nanoparticles on carbon dioxide separation performances of PVA/PEG cross-linked membranes. Chem. Pap. 75, 3131–3153 (2021). https://doi.org/10.1007/s11696-020-01486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-020-01486-7

Keywords

Navigation